
DOCUMENT RESUME

ED 084 889 EM 011 713

AUTHOR Smith, John B.
TITLE An Advanced Sequence of Computer Courses for

Humanities Students: The Penn State Program.
INSTITUTION Pennsylvania State Univ., University Park.
PUB DATE Aug 73
NOTE 14p.; Paper presented at the Conference on Computers

in the Undergraduate Curricula (Claremont,
California, June 18-20, 1973)

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

MF-$0.65 HC -$3.29
*Computer Assisted Instruction; Computer Programs;
*Computers; Computer Science; *Computer Science
Education; *Humanities; *Humanities Instruction;
Problem Solving; Program Descriptions; Programing
Languages; Undergraduate Study
Natural Language; Pennsylvania State University; PL1
Programing Language

I series of computer science courses at Pennsylvania
State University is designed to meet the needs of undergraduate
humanities students who wish to use computers. The first of three
integrated courses exposes the student to the range of computer
applications in the humanities and teaches him to write nontrivial
programs in the PL/1 Programing Language. Instruction is arranged
around programing problems; students survey the literature of
computer applications and do a design project. The second course
concentrates upon teaching students how to break complex tasks into
their components. Natural language use is stressed and additional
technical information is presented, including matters such as job
control language and system utilities. In the third course the
student solves a complex problem. He develops a thesis, translates it
into operational terms and computational procedures, performs an
analysis, interprets the results, and maps the results back to the
level from which he began. The sequence has been judged successful
since it teaches students both the general techniques of
problem-solving and, more specifically, creative, substantive ways to
use the computer in the humanities. (PB)

CD
C=t

crl

41111311

0

Ui

FILMED FROM BEST AVAILABLE COPY

An Advanced Sequence of Computer Courses for Humanities Students: The

Penn State Program

By John B. Smith
Department of English
Pennsylvania State University
University Park, Pa. 16802
Home: 814-238-2767
Offices: -865-9681

-865-0438

U 5 DEPARTMENT OF HEALTH,
EDUCATION 8 WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DCCUMENT HAS BEEN REPRO
DUCE() EXACTLY A5 RECEIVED FROM
THE PERSON OR ORGANIZATION

ORIGiN

MING IT POINTS OF VIEN OR OPINIONS

STATED DO NOT NECESSARILY HEPPE

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Introduction

During the past five or six years the growth of special courses in com-

puter techniques for humanities students has been dramatic :. The September,

1972, Computers and the Humanities indicates that there are at least forty

institutions over the country offering introductory courses. Since the

survey was conducted by voluntarily submitted forms, this number is prob-

ably conservative. This indication of awareness of the necessity for

courses sensitive to the needs and intellectual habits of humanists is

most encouraging; however, if humanistic studies involving the computer

are to move from the level of the mechanical to the creative, if the com-

puter is ever to become an active, easily and naturally applied tool at the

undergraduate level, colleges and universities must offer more acivanced

courses, perhaps concentrating on specific subject areas. Of the ten uni-

versities listed in Computers and the Humanities who offer more than one

course for humanities students only five offer advanced courses that build

on and extend the introductory material. In the remarks that follow, I

shall try to show not only the necessity of advanced courses, but the nee-

ess.;.ty of a tightly integrated sequence of courses each building on the

preceding and leading to the course that follows. Since I have proposed

and taught at Penn State a program of this sort I shall cast my remarks in

the context of this experience.

Rationale ior Sec nonce

Any rationale for a sequence of special courses for humanists must be

based on the realization that their mode or habits of thought differ from

those of their counterparts in the sciences, business, and agriculture.

Smith--2

Too often, particularly among computer scientists, humanities students are

regarded simply as slow if not stupid when it comes to learning computer

programming. Much has been written about "the two cultures" or differences

in quantitative and verbal reasoning to warrant comment here; a more criti-

cal factor has gone relatively unnoticed. Science students and students in

the humanities often differ considerably in their tendency to move from the

specific to the general and, more importantly, their sense of comfort with

situations in which such jumps are impossible. For example, the student of

literature is consistently asked to observe in his readings small, subtle

patterns among words and ideas and then to extend these observations, quickly

and too often imprecisely, to generate abstract theses concerning whole

works, canons, and, sometimes, entire literary traditions. If the student

works in this manner long enough this mode of thought becomes habitual, if

not reflexive. A mathematics undergraduate, on the other hand, may find

such jumps quite foreign. For example, a student studying modern algebra

begins with a set of axioms and then slowly and deliberately constructs a

mathematical system. He must, of course, have some overview of the direction

in which his efforts are going; but most of his time is spent focused on

specific problems. Few would argue that one mode of thought is inherently

"better" than the other, but recognition of their differences leads to dif-

ferent approaches for teaching computing to these two types of individuals.

Because of the large volume of unfamiliar detail, the introductory eour:ie

must be structured in a way that gives the humanities student a s(nse of

continuity and total organization.

For the physical or social science major, the computer fits closely

familiar research designs so that once he knows how to use the computer he

Smith--3

knows what to use it for. This is not true for the humanist. The work he

does in his courses and research projecis often involves high levels of

abstraction and subjectivity. Once he knows how to program, he may be

able to see the usefulness of a concordance, d word index, a reverse

spelling dictionary, or a list of relative frequencies among words; but

he is unlikely to see right away the more interesting and creative uses

to which the computer can be applied. For example, it (is unlikely that

he will see on his own the application of Fourier analysis for thematic

studies because it is quite unlikely that he is familiar with this model

if, in fact, he has ever heard of it. Even if presented with distribution

graphs of themes, the unfamiliarity of thinking visually or spatially about

a piece of literature or music necessitates considerably more exposure to

and instruction in these new analytic tools for the humanities student than

for others. He must have time in which to assimilate these models and

methods in addition to learning rudimentary programming skills. Only then

will he be able to make the broad conceptual jump from mechanical skills

to humanistic interest that will result in intellectually developm2ntal

uses of the computer. In addition to time, this takes an integrated pro-

gram that can connect the details cf programming and control languages with

substantive applications in the student's field. The sequence of courses

described below represents an attempt to establish such a curriculum.

Fir!;t Cour:;e

The first course has two major ObjeCLivuL to 6evelop the stuuent's

competence to write nontrivial programs in PL/1 and to expose him to a broad

range of humanities applications. In teaching programming, one must have

some sense of the culture shock that hits many humanities students when

Smith--4

faced with the overwhelming detail associated with the computer. The situ-

ation is analogous to what someone from Appalachia would experience if sud-

denly placed in the middle of Manhattan and told to function. Much of what

one needs to know to get along is unconscious; consequently if he had an

experienced "instructor" at his side it would be impossible to anticipate

all of the novitiate's needs and impossible for the novitiate to remember

the information if it were given. With encouragement, however, the student

will survive if he endures and works hard at learning the intricacies of

his new environment.

Translated into an introductory coul:se in computing, the instructor

must empathize with the discomfort the humanities student experiences be-

cause of his need to grasp the structure of the whole. Although this need

cannot be met in the first few weeks, there are ways of organizing the mat-

erial that make it 'easier for the humanities student. It is most important

to provide some larger context in which the details of a programming lan-

guage can be placed. That context used in most introductory courses taught

by computer scientists is the logical structure of the programming language

itself. When they cover I/O they are likely to discuss a number of the

various options and control words in the language, comparing and contrasting

their various features. Similarly, if discussing looping they r'',.en intro-

duce the DO statement with all of its optional features. For the science

student who has a sense of where all of this is leading and how it hiav

eventually be applied to a real problem, approach Ihe; hot lor

great many humanities students, it is disasterous.

A more reasonable approach for the humanities student is to organize

the material around a sequence of programming problems with which he can

Smith - -5

identify. If the problems make sense to him, it is much easier for him to

learn the concepts necessary to solve them. Since most humanists share an

interest in verbal materials, I use some four or five problems related to

text processing. The first assignment is to write a program to read in

several lines of text and print them out. Next they read in the text, ex-

tract the words, and print them, one word per line. Then they read in the

text, extract the words, sort them into alphabetical order, and print them.

The fourth exercise is a binary search for particular words in a sorted

list. By the time the students have completed these for problems they

will have used most of the basic features of the language. It is a source

of the greatest comfort to these students to know that it takes about

twenty new control words or concepts for the first problem, ten additional

for the second, five for the third, and only two or three for the fourth.

As fewer syntactic forms are introduced, more and more emphasis is

placed on algorithmic principles. For example, when the concept of a sub-

routine is introduced with the binary search, it represents a relief from

keypunching all those cards again as opposed to any really strange new

principle that must be grappled with. These four exercises consume four

or five weeks of the term; having survived this, the student is now ready

for a relatively quick overview of the language that introduces additional

features and places them in context with those they already know. By this

time the student has at least a rudimentary knowledge of how to use the

computer.

Giving the student a sense of what to use it for is much more subtle

and takes much longer (in fact, this is the major focus of the two succeeding

courses). A start_ is made by having the students read a great deal Of out-

side material describing actual applications in the humanities. To assist

Smith - -6

this process, I make available to them a bibliography of some eight thou-

sand titles I have accumulated along with a retrieval program to access it.

During the second half of the course I also lecture more and more on appli-
_

cations showing as closely as possible the actual computational steps in-

volved.

The major programming effort of the second half of the course concerns

1 term project of the student's design. This experience gives them a chance

to integrate the various facets of the course and, indeed, a good deal of

their undergraduate curriLulum. Typical of the projects produced at this

level are one line poetry generators, random number art, and thematic

studies of short stories.

The first time this course was taught, we began with twenty-six stu-

dents; twenty-three finished. Of the twenty-three that finished, eighteen

took the second course along with several auditors. This record, we felt,

strongly indicated the validity of the course's underlying rationale.

Second Course

At the end of the first course students have a basic knowledge of PL/1

and have been exposed to a variety of applications in the humanities. Stu-

dents who stop formally studying the computer at this point but who wish to

apply it to their interests often find themselves in an awkward position.

Having the competence to write an exercise-type program and the intellt.ctual

exposure to at least: get some glimpse of Ole potelaial ol tio.

Lh often are over-optimistic in Ow asks they a:;,,111,2 ,Ha {Lod Liwm:;cives

embroiled in unrealistic and inefficient programming projects. The frustra-

tion that results is sometimes enough to undo the previous semester's work

and turn them off from computing completely. The second course attempts to

Smith--7

avoid these difficulties by considering the way complex tasks can be broken

into individual programs or job steps. Thus, it focuses at a higher level,

considering the individual program in the context of the larger resource

environment of the system. Because of the backgrounds and need of the

humanities students enrolled, this second course also emphasizes natural

language techniques although I am careful to emphasize the generality of

the principles involved.

Text processing is viewed from a systems analytic perspective. The

process of analyzing natural language is broken down into the following

sequential steps: encoding, scanning, sorting, file-structuring, and

accessing. By realizing that what one gets out at the far end is deter-

mined by what one puts in at the near end, the student is able to resolve

many of the seemingly arbitrary decisions that plague the novice. For

example, if one wishes to consider segmental length distributions, he had

better include punctuation marks when he types or punches the text. The

student can thus establish principles that guide him without restricting

himself to arbitrary conventions that make specific tasks awkward.

The power of this approach is particularly evident in the matter of

data structuring. By classifying the kinds.of tasks performed in language

analysis and the particular data organization they require, I am able. to

show inferentially the necessity for a random accessible file structure

that makes each occurrence of each word available along with it:; complete

conte;:t. (See John d. Smith, "RATS: Al Ni6d[e-LevH Ti xi Utility :;y:itA'm,"

Churn 6,5 (May, 1972), 277-283 for a detailed discussion of this text 5y:;tem.)

Having thus classified problems and noted the utility and restrictions of

various computational approaches, the student is better qualified to ana-

lyze subsequent problems and anticipate possible difficulties, preparing

Smith - -8

him to use the computer in honors-type projects or, possibly, in later grad-

uate work.

The second course also contains much additional technical information.

To combine various program modules to perform a sequence of operations de-

mands familiarity with, in this case, the IBM Job Control Language. A

thorough introduction to JCL, including readings in the technical manuals,

is given. Students are assigned several exercises involving tape and disk

data sets.

It is at this level that the student is introduced to some of the sys-

tem utilities. Because of the extensive use of sorting techniques, consid-

eration and exercises involving both the JCL invoked SORT as well as a PL/1

link-edited sort are given. Other utilities, including IEBGENER, are dis-

cussed.

Additional PL/1 concepts are introduced in conjunction with the JCi.

exercises. Prominent among these are record I/O features, regional data

sets, and the PL/1 list-processing features--items omitted or discussed

only briefly in the introductory course. Some attention is also given to

programming efficiency including timing tests to determine the relative

efficiency of various blocks of code that perform the same operation. As

before, the student is required to report his outside readings in applica-

tions and to present a term project of his own design.

Completion of the second course marks the end oC the lirr pita!;(2 o,

pror,rm. By 1 I ;;Ltltnt progicd iwygmid

of programming competence achieved in a single introductory course. he has

learned. JCL and is familiar with a fair number of system utilities. He has

seen the way programs of his own design and utility programs can be fitted

together to produce a rather sophisticated data handling system. By

Smith--9

considering problems systematically, he can see how seemingly inconsequen-

tial details at one point determine later capabilities. Having completed

this sequence of courses, the student has the technical background to apply

the computer to problems of his own design and interests.

Third Course

The third course marks a second phase of the program--an opportunity

for the student to apply the techniques and information he has gained to an

extended project of his own design. The projects done in this seminar arc

suitable for undergraduate honors projects or, at the graduate level, trial

runs for masters and doctoral theses. The student is asked to follow a pre

scribed method and report on his work at two different stages in proi;ress

as well as make a final presentation.

The method prescribed is based upon the assumption that the humanist

must use the computer to explore the ideas and problems that interest him

and his colleagues; not those problems that may be raised simply because

the computer can solve them. Studies that result in frequency counts or

various ratios in the absence of a supporting context or rationale have

largely been ignored or dismissed in the humanities. Consequently, the

first step is to define and justify a thesis within the traditional terms

and methods of the student's discipline. At this level, the thesis arument

might read like that found in a conventional term paper or dissertation,

quiLe omiLliny; any referonce lo Lieu compnLi:r :ii ail,

it:ions and methods of the thesis must be translated into operative terms

and computational procedures. For example, an image might be defined on

the first level as any word having sensory or thematic value, but when

Smith--10_

translated into computational terms, it becomes a partitionina of the vocabu-

lary into those words selected as images and those not. Often the mapping

onto the operative level is not one -to -one; for example, I have seen studies

that consider the associative relations among textual elements using a num-

ber of analytic programs and aids, including frequency counts by text sec-

tion) concordances, and principal component analysis.

Having defined the thesis in conventional terms and translated it into

operative terms and procedures, the student then performs his analysis.

When all procedures have been run, the student must interpret his results,

but on the operative level. That is, if using factor analysis, he must

determine the significant factors, their loadings, and their adequacy. if

using Fourier analysis fora thematic study, the student must eetermine tilc

significant frequencies, produce cumulative plots, and then seek inter-rela-

tion among the various thematic distributions. When he has analyzed all of

his data in terms of the models and procedures in which they are defined,

he is read, to move to the final step.

The last step involves mapping his results back out to the level. from

which he started. The student must now present an argument supportin;; and

demonstrating his thesis that is once more understandable to his non-com-

potational colleagues. To be sure, computer produced materials and data

will be used in support of the argument, but the main presentation must 6e

c.ct in terms as close to the traditional ones az; iw:i;ible.

Student.:; report oh their projecLh dillercht Ali

port on the initial thesis statement and all make final presentations. At

some intermediate stage, students report on the mapping process, the oper-

ative procedures being used, and anticipated directions. It is my experience

Smith--11

that projects executed in this way display a rigor of thought and argument

that is uncommon in much student work, particularly in the humanities. Of

the students enrolled in my seminar on Computational Stylistics, at least

half of their projects should result in publishable work.

This last point: raises a question implicit in the design of this en-

tire course--the value of research training at the undergraduate level.

The argument usually raised against training undergraduates to do research

is that many have no plans to go to graduate school. This argument, in my

opinion, ignores the value involved in the training experience itseiC. in

this course and this program students are asked to assimilate and apply A

wide variety of skills and information, much of it derived from other p.irts

of their educational experience, to an extended problem that intere:;Ls them.

The problem-solving techniques developed are enough to justify the endeavor,

for whether the student ever uses a computer again or not, he will be mAch

better prepared to approach any .complex problem, break it into smaller

problems, and to assemble a solution. Finally, as no other, this cour;c

gives the undergraduate an opportunity to integrate a large number of the

different facets of his curriculum. The experience of actually using his

training in literature, history, math, physics, and computer techniques on

a single project of his design is often an exhilerating experience. What

more can we offer any student?

Conclusion

Other collegeii and InliVer:iilic:; lmplementin); cmnput(,r cunrs:. for

humanists should give careful consideration to the department or COlic!

in which they are to be located. In the past, computer science depart-nts

have unquestionably contained the personnel best qualified to teach computing.

Smith--12

As Computer Science becomes more and more a recognized discipline, the

amount of attention and prestige associated with "academic" courses as

opposed to service courses has changed considerably. Today, the computer

scientist who puts the necessary effort into a course for humanists,

learning all of the specialized techniques and -tantive applications

essential to teach it properly, is likely to be oenalized within his pro-

fession; he simply will not be taken seriously by his colleagues. The

major argument in favor of locating such courses in many Computer Science

departments seems to be territorial rather than pedagogical: regardless

of interests, no department wishes to lose students or credit hours that

suppAdrt graduate programs. Ultimately, however, those of us decpiy com-

mitted to seeing the computer become in reLlity the tool it promises to be

for the humanities must insist that pedagogical concerns receive highc:,;L

priority; otherwise the program will be stifled. As more and more human-

ists complete course sequences of this sort and continue to work in the

field, we can look to them for teachers. They are much more likely to have

the enthusiasm and dedication needed to teach other humanists than their

colleagues in CoMputer Science. The best of two worlds, however, may be

achieved through joint appointments of such. individuals and crosslisted

courses, thereby insuring pedagogical priorities while distributing credit

hours to those most concerned about them.

This sequence of courses has been taught once under an experiment al

Liberal Arts rui)ric, and Ow finiL Imo cour:;r:; will hc durin

'73 winter and spring terms. We are currently negotiating permanent list-

ings. The program has been closely evaluated and is, we believe, a complete

success.. The students emerge thoroughly grounded in the programming lan-

guage as well as the system resources and control language; they are able

Smith-13

to approach a complex problem, break it into modules, and anticipate the

power and limitations imposed by various decisions. Finally, they have

been taken step-by-step through an extended research project. To the best

of my knowledge, this program because of its integrated, sequential organ-

ization is the most thorough in the country. Obviously it will change, but

the rationale behind it and the experience gained in teaching it may be

useful to others in establishing their own programs to fit the needs of

their students.

